Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: A non-equilibrium molecular dynamics study.
نویسندگان
چکیده
The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. At a fixed temperature, the shear-shinning behavior is related not only to the inter- and intramolecular alignments of the solvent molecules but also to the decrease of the average size of the nanoaggregates at high shear rates. The variation of the viscosity with temperature at different shear rates is also related to the size and relative composition of the nanoaggregates. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified. Finally, the position of bitumen mixtures in the broad literature of complex systems such as colloidal suspensions, polymer solutions, and associating polymer networks is discussed.
منابع مشابه
Rheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids
Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...
متن کاملAnalysis of the shape of dendrimers under shear.
Nonequilibrium molecular-dynamics simulations are used to investigate the molecular shape of dendrimers and linear polymers in a melt and under shear. Molecules are modeled at the coarse-grained level using a finitely extensible nonlinear elastic bead-spring model. The shape of dendrimers and linear polymers at equilibrium and undergoing planar Couette flow is analyzed quantitatively and it is ...
متن کاملA constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows.
Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, planar elongational flow, and a combination of shear and elongational flow are unified consistently with a tensorial model over a wide range of strain rates. A model is presented that predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar flow field. The model provides a quantitat...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملInternal structure of dendrimers in the melt under shear: a molecular dynamics study.
The molecular structure of fluids composed of dendrimers of different generations is studied using nonequilibrium molecular dynamics (NEMD). NEMD results for dendrimer melts undergoing planar Couette flow are reported and analyzed with particular attention paid to the shear-induced changes in the internal structure of dendrimers. The radii of gyration, pair distribution functions and the fracta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 24 شماره
صفحات -
تاریخ انتشار 2015